☰ Menu

      Single Cell RNA-Seq Analysis

Home
Discussion and Lectures
Intro to the Workshop
What is Bioinformatics/Genomics?
Experimental Design and Cost Estimation
Closing thoughts
Data Reduction
Files and Filetypes
Generating Expression Matrix
Prerequisites
CLI
R
Data analysis
Prepare scRNAseq Analysis
Part 1- Create object
Part 2- Filtering
Part 3- Normalization
Part 4- Dimensionality reduction
Part 6- Enrichment and DE
Support
Cheat Sheets
Software and Links
Scripts
ETC
CAT website
Github page
Report Errors

Introduction to Single Cell RNA-Seq Part 2: QA and filtering

Set up workspace

First, we need to load the required libraries.

library(Seurat)
library(ggplot2)
library(tidyr)
library(dplyr)
library(kableExtra)

If you are continuing directly from part 1, the experiment.aggregate object is likely already in your workspace. In case you cleared your workspace at the end of the previous section, or are working on this project at a later date after re-starting R, you can use the readRDS function to read your saved Seurat object from part 1.

experiment.aggregate <- readRDS("scRNA_workshop-01.rds")
experiment.aggregate
## An object of class Seurat 
## 38606 features across 60697 samples within 1 assay 
## Active assay: RNA (38606 features, 0 variable features)
##  1 layer present: counts

First lets look at the number of valid cells in each batch

Cell counts per sample
Sample Number of Cells
LRTI_WRK1 28124
LRTI_WRK2 14933
LRTI_WRK3 3343
LRTI_WRK4 14297

A seed is used to initialize pseudo-random functions. Some of the functions we will be using have pseudo-random elements. Setting a common seed ensures that all of us will get the same results, and that the results will remain stable when re-run.

set.seed(12345)

Display metadata QA/QC

Using a few nested functions, we can produce prettier, more detailed, versions of the simple exploratory summary statistics we generated for the available metadata in the last section. In the code below sections below,

Further, Seurat has a number of convenient built-in functions for visualizing metadata. These functions produce ggplot objects, which can easily be modified using ggplot2. Of course, all of these visualizations can be reproduced with custom code as well, and we will include some examples of both modifying Seurat plots and generating plots from scratch as the analysis continues.

1) 10% quantile tables are produced for each metadata value, separated by sample identity. 2) Ridge Plot 3) Violin Plot

Each is a different way of looking at the data as to get a better understanding of how each sample compares

Feature counts (genes) per cell

Feature count distribution by sample
LRTI_WRK1 LRTI_WRK2 LRTI_WRK3 LRTI_WRK4
0% 300.00 300.0 300.0 300.0
5% 305.00 387.0 337.1 701.4
10% 311.00 522.2 375.0 1671.0
15% 320.00 993.6 435.3 2686.4
20% 330.00 1650.0 499.4 3509.0
25% 345.00 2104.0 585.0 3982.0
30% 368.00 2789.0 727.6 4310.0
35% 401.00 3472.0 908.0 4543.0
40% 441.00 3981.8 1186.8 4732.0
45% 494.00 4398.4 1699.6 4913.0
50% 602.00 4725.0 2184.0 5066.0
55% 900.30 5011.0 2617.1 5212.8
60% 1386.00 5260.0 3196.0 5347.0
65% 1886.90 5496.0 3785.0 5493.0
70% 2616.10 5691.0 4287.2 5630.0
75% 3352.00 5894.0 4799.5 5793.0
80% 4076.40 6099.0 5387.4 5960.0
85% 4682.00 6311.2 5961.0 6178.6
90% 5221.70 6580.0 6703.8 6460.0
95% 5836.85 7010.0 7645.3 6982.2
100% 13205.00 10859.0 13321.0 9953.0

UMI counts per cell

UMI count distribution by sample
LRTI_WRK1 LRTI_WRK2 LRTI_WRK3 LRTI_WRK4
0% 333.00 341.0 337.0 329.0
5% 374.00 633.0 548.0 1550.4
10% 387.00 989.0 663.0 3475.0
15% 402.00 1989.2 822.0 7046.8
20% 421.00 3332.4 999.0 11645.6
25% 448.00 4581.0 1217.5 15134.0
30% 489.00 7493.6 1642.2 17535.8
35% 542.00 10957.2 2123.2 19545.8
40% 614.20 14282.8 2790.8 21091.8
45% 736.00 17231.0 3963.5 22609.4
50% 1051.00 20197.0 5167.0 23955.0
55% 1660.65 23045.8 6994.1 25328.0
60% 2496.00 25809.2 9699.0 26753.6
65% 3615.85 28400.8 12977.6 28163.8
70% 6011.20 30822.4 16366.8 29885.4
75% 8947.50 33341.0 21187.5 31696.0
80% 13408.60 36139.0 27606.0 33712.6
85% 18554.55 38939.4 35278.6 36513.2
90% 23435.40 42897.6 46873.4 40754.0
95% 29076.05 49827.2 67186.0 49096.0
100% 170061.00 113899.0 374591.0 130605.0

Percentage of Mitochondria per cell

Mitochondrial percentage distribution by sample
LRTI_WRK1 LRTI_WRK2 LRTI_WRK3 LRTI_WRK4
0% 0.000 0.000 0.000 0.000
5% 0.368 0.525 0.180 1.614
10% 0.721 1.464 0.357 2.055
15% 1.018 2.116 0.584 2.297
20% 1.311 2.472 0.796 2.477
25% 1.606 2.737 1.075 2.629
30% 1.887 2.963 1.302 2.752
35% 2.123 3.156 1.570 2.879
40% 2.356 3.327 1.863 2.996
45% 2.583 3.511 2.103 3.118
50% 2.820 3.675 2.336 3.239
55% 3.100 3.839 2.642 3.364
60% 3.434 4.017 2.907 3.494
65% 3.909 4.196 3.312 3.639
70% 4.605 4.391 3.755 3.806
75% 5.650 4.615 4.394 4.004
80% 7.262 4.895 5.388 4.275
85% 9.610 5.273 7.478 4.672
90% 14.019 5.942 10.352 5.566
95% 30.216 9.451 25.616 10.212
100% 94.769 87.811 91.625 88.044

Percentage of Ribosomal (protein) per cell

Ribosomal percentage distribution by sample
LRTI_WRK1 LRTI_WRK2 LRTI_WRK3 LRTI_WRK4
0% 0.000 0.000 0.000 0.144
5% 0.882 0.611 0.192 1.498
10% 1.907 1.135 0.301 5.342
15% 2.961 3.782 0.393 6.252
20% 3.648 5.220 0.502 6.804
25% 4.128 5.671 0.639 7.213
30% 4.556 6.018 0.833 7.565
35% 4.923 6.312 1.142 7.902
40% 5.263 6.581 1.899 8.217
45% 5.600 6.836 3.208 8.521
50% 5.974 7.089 4.098 8.824
55% 6.364 7.354 4.817 9.118
60% 6.806 7.620 5.400 9.440
65% 7.345 7.912 6.147 9.783
70% 8.078 8.245 6.969 10.176
75% 9.089 8.659 7.845 10.635
80% 10.385 9.250 8.859 11.157
85% 11.861 10.313 10.125 11.868
90% 13.561 12.554 11.672 13.130
95% 15.965 16.720 14.853 16.216
100% 45.035 38.339 38.631 52.027

Modifying Seurat plots

Modifying the ggplot objects produced by a Seurat plotting function works best on individual panels. Therefore, to recreate the function above with modifications, we can use lapply to create a list of plots. In some cases it may be more appropriate to create the plots individually so that different modifications can be applied to each plot.

VlnPlot(experiment.aggregate, features = "nCount_RNA", pt.size = 0.01) + 
  scale_y_continuous(trans = "log10") +
  scale_fill_viridis_d(option = "mako") +
  ggtitle("log10(nCount_RNA)")

These can later be stitched together with another library, like patchwork, or cowplot.

Custom plots

The Seurat built-in functions are useful and easy to interact with, but sometimes you may wish to visualize something for which a plotting function does not already exist. For example, we might want to see how many cells are expressing each gene over some UMI threshold.

The code below produces a ranked plot similar to the barcode inflection plots from the last section. On the x-axis are the genes arranged from least ubiquitously expressed to most. In a single cell dataset, many genes are expessed in a relatively small number of cells, or not at all. The y-axis displays the number of cells in which each gene is expressed.

Note: This function is SLOW. You may want to skip this code block or run it while you take a break for a few minutes.

plot(sort(Matrix::rowSums(GetAssayData(experiment.aggregate) >= 3)) , xlab="gene rank", ylab="number of cells", main="Cells per genes (reads/gene >= 3 )")

Scatter plots

Scatter plots allow us to visualize the relationships between the metadata variables.

Gene Plot, scatter plot of gene expression across cells, (colored by sample)

Cell filtering

We use the information above to filter out cells. Here we choose those that have percent mitochondrial genes max of 10% and unique UMI counts under 50,000 or greater than 500. Further requiring the number of features persent per cell to be 1000 genes.

Cell Complexity

The standard way of calculating this is log10(genes)/log10(counts) however this gives absolute values which are difficult to judge. A possibly better approach is to fit a line through the cloud and then calculate the difference from the observed value to the expected.

## 
## Call:
## lm(formula = log10(qc.metrics$nFeature_RNA) ~ log10(qc.metrics$nCount_RNA))
## 
## Coefficients:
##                  (Intercept)  log10(qc.metrics$nCount_RNA)  
##                       0.8111                        0.6615

And we can add the information to the scatter plot

Histograms of metadata

Histograms can also be useful to look at the distribution over all the cells

Displaying the number of genes per cell

With Mitochondrial expression

Cell filtering

The goal of cell filtering is to remove cells with anomolous expression profiles, typically low UMI cells, which may correspond to low-quality cells or background barcodes. It may also be appropriate to remove outlier cells with extremely high UMI counts. In this case, the proposed cut-offs on the high end of the distributions are quite conservative, in part to reduce the size of the object and speed up analysis during the workshop.

These filters can be put in place with the subset function.

Prefiltered data

Cell countse per sample
Sample Number of Cells
LRTI_WRK1 28124
LRTI_WRK2 14933
LRTI_WRK3 3343
LRTI_WRK4 14297

Post filtered data

Cell countse per sample
Sample Number of Cells
LRTI_WRK1 12372
LRTI_WRK2 12480
LRTI_WRK3 2084
LRTI_WRK4 13116

Play with the filtering parameters, and see how the results change. Is there a set of parameters you feel is more appropriate? Why?

Feature filtering

When creating the base Seurat object, we had the opportunity filter out some genes using the “min.cells” argument. At the time, we set the min feature to keep a cell to 300. Since we didn’t filter out any features then (set to 0), we can apply a filter at this point. If we had filtered when the object was created, this would be an opportunity to be more aggressive. The custom code below provides a function that filters genes requiring a min.umi in at least min.cells, or takes a user-provided list of genes.

# define function
FilterGenes <- function(object, min.umi = NA, min.cells = NA, genes = NULL) {
  genes.use = NA
  if (!is.null(genes)) {
    genes.use = intersect(rownames(object), genes)
    } else if (min.cells & min.umi) {
      num.cells = Matrix::rowSums(GetAssayData(object) >= min.umi)
      genes.use = names(num.cells[which(num.cells >= min.cells)])
    }
  object = object[genes.use,]
  object = LogSeuratCommand(object = object)
  return(object)
}
# apply filter
experiment.filter <- FilterGenes(object = experiment.aggregate.filtered, min.umi = 1, min.cells = 2)
# filtering results
experiment.filter
## An object of class Seurat 
## 31828 features across 40052 samples within 1 assay 
## Active assay: RNA (31828 features, 0 variable features)
##  1 layer present: counts

We are going to choose to not filter the genes at this time, but know you can

Prepare for the next section

Save object

saveRDS(experiment.aggregate.filtered, file="scRNA_workshop-02.rds")

Download Rmd

download.file("https://raw.githubusercontent.com/ucsf-cat-bioinformatics/2024-08-SCRNA-Seq-Analysis/main/data_analysis/03-normalize_scale.Rmd", "03-normalize_scale.Rmd")

Session Information

sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: aarch64-apple-darwin20
## Running under: macOS Sonoma 14.6.1
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: America/Los_Angeles
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] kableExtra_1.4.0   dplyr_1.1.4        tidyr_1.3.1        ggplot2_3.5.1     
## [5] Seurat_5.1.0       SeuratObject_5.0.2 sp_2.1-4          
## 
## loaded via a namespace (and not attached):
##   [1] deldir_2.0-4           pbapply_1.7-2          gridExtra_2.3         
##   [4] rlang_1.1.4            magrittr_2.0.3         RcppAnnoy_0.0.22      
##   [7] spatstat.geom_3.3-2    matrixStats_1.3.0      ggridges_0.5.6        
##  [10] compiler_4.4.1         systemfonts_1.1.0      png_0.1-8             
##  [13] vctrs_0.6.5            reshape2_1.4.4         stringr_1.5.1         
##  [16] pkgconfig_2.0.3        fastmap_1.2.0          labeling_0.4.3        
##  [19] utf8_1.2.4             promises_1.3.0         rmarkdown_2.28        
##  [22] purrr_1.0.2            xfun_0.47              cachem_1.1.0          
##  [25] jsonlite_1.8.8         goftest_1.2-3          highr_0.11            
##  [28] later_1.3.2            spatstat.utils_3.1-0   irlba_2.3.5.1         
##  [31] parallel_4.4.1         cluster_2.1.6          R6_2.5.1              
##  [34] ica_1.0-3              spatstat.data_3.1-2    bslib_0.8.0           
##  [37] stringi_1.8.4          RColorBrewer_1.1-3     reticulate_1.38.0     
##  [40] spatstat.univar_3.0-0  parallelly_1.38.0      lmtest_0.9-40         
##  [43] jquerylib_0.1.4        scattermore_1.2        Rcpp_1.0.13           
##  [46] knitr_1.48             tensor_1.5             future.apply_1.11.2   
##  [49] zoo_1.8-12             sctransform_0.4.1      httpuv_1.6.15         
##  [52] Matrix_1.7-0           splines_4.4.1          igraph_2.0.3          
##  [55] tidyselect_1.2.1       abind_1.4-5            rstudioapi_0.16.0     
##  [58] yaml_2.3.10            spatstat.random_3.3-1  codetools_0.2-20      
##  [61] miniUI_0.1.1.1         spatstat.explore_3.3-2 listenv_0.9.1         
##  [64] lattice_0.22-6         tibble_3.2.1           plyr_1.8.9            
##  [67] withr_3.0.1            shiny_1.9.1            ROCR_1.0-11           
##  [70] evaluate_0.24.0        Rtsne_0.17             future_1.34.0         
##  [73] fastDummies_1.7.4      survival_3.7-0         polyclip_1.10-7       
##  [76] xml2_1.3.6             fitdistrplus_1.2-1     pillar_1.9.0          
##  [79] KernSmooth_2.23-24     plotly_4.10.4          generics_0.1.3        
##  [82] RcppHNSW_0.6.0         munsell_0.5.1          scales_1.3.0          
##  [85] globals_0.16.3         xtable_1.8-4           glue_1.7.0            
##  [88] lazyeval_0.2.2         tools_4.4.1            data.table_1.15.4     
##  [91] RSpectra_0.16-2        RANN_2.6.2             leiden_0.4.3.1        
##  [94] dotCall64_1.1-1        cowplot_1.1.3          grid_4.4.1            
##  [97] colorspace_2.1-1       nlme_3.1-166           patchwork_1.2.0       
## [100] cli_3.6.3              spatstat.sparse_3.1-0  spam_2.10-0           
## [103] fansi_1.0.6            viridisLite_0.4.2      svglite_2.1.3         
## [106] uwot_0.2.2             gtable_0.3.5           sass_0.4.9            
## [109] digest_0.6.37          progressr_0.14.0       ggrepel_0.9.5         
## [112] farver_2.1.2           htmlwidgets_1.6.4      htmltools_0.5.8.1     
## [115] lifecycle_1.0.4        httr_1.4.7             mime_0.12             
## [118] MASS_7.3-61